fbpx

5G Patents – Initiatives, Enabling Technologies, and SEPs Comparison

The battle for 5G supremacy is on full swing. The disruptive technology holds enormous potential to add economic value to all walks of our lives. It is 5G that will make IoT, AR, VR, Connected Cars, and many other unforeseen next-gen technologies commonplace.

The global 5G market is forecasted to touch $277 billion marks between 2019-2025 at an impressive CAGR of 111%. Governments and telecom companies around the globe know that the numero uno of 5G is going to be the next tech leader.

Further, as it is widely believed, the leaders of 5G are going to be the organizations determining 5G standards. The enterprises holding most Standard Essential Patents (SEPs) will be joining the top echelons. In fact, the organizations developing standards are considered as Tier-1 organizations. The ones that develop services come next. And the Tier-3 organizations will be those providing 5G related services.

Added to that, the countries with the highest number of 5G patent holders will enjoy a unique advantage. These countries will be able to build 5G related products and services at an economical cost. In these countries, the growth of industries like IoT, Smart Homes, Connected Cars, etc is going to foster at a faster rate while at cheaper prices.

Organizations in these countries are going to earn more royalties, have better R&D efficiency, cheaper products and services, and first-mover advantages on a lot of areas that are ripe for hyper economic growth.

Thus, 5G is going to be a technology that isn’t only going to shift the tectonic plates of the technological landscape around the world. It is also going to have an enormous impact on geopolitics—I think the recent developments that we have seen, confirm the deep roots of 5G in all aspects of our lives.

What we have brought for you in this whitepaper is an overview of the crucial moves of the leading 5G countries around the globe. In the first whitepaper on 5G, 5G Market Research: What Are The Top Players Up to? We discussed the activities of top 5G players.

In this whitepaper, we will help you understand the concept of SEPs in 5G technologies and most importantly why you shouldn’t rely completely on the patents declared as SEPs to standard governing bodies like ETSI, 3GPP, and others. The whitepaper can also be instrumental to understand the variation between the SEPs declared to a standard like ETSI and the actual count of SEPs in a portfolio.

Thus, if you own 5G patents, there are fair chances that you might have SEPs in your portfolio which you haven’t spotted yet. The reason is quite straightforward: Analyzing thousands of patents and then checking for essentiality is an onerous task.

Therefore, a lot of 5G patent holders were unable to spot SEPs in their portfolio. We have brought those stats too for you in this whitepaper. The table of contents on the next page will help you gauge better what the whitepaper has in store for you:

Journey to 5G technology

“I’m ringing you just to see if my call sounds good at your end,’ or something to that effect.” said Martin Cooper, a Motorola employee, during a call which commenced the mobile phone era.

It was the first mobile call made (in April 1973) using a base station of 900 MHz and a prototype which was later known as the world’s first commercial cell phone. It used the analog service called Advanced Mobile Phone Service (AMPS) on which 1G or the first generation of mobile communication was based on.

Evolution of 5G

1G was introduced in 1979 and continued until being replaced by 2G or the second generation of mobile communication that’s based on digital radio signals. 

GSM is one of the most popular standards developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks. It was first deployed in Finland in 1991.

While in North America, they mostly used Code Division Multiple Access (CDMA), another 2G standard proposed by Qualcomm and launched in 1995.

The third generation or 3G networks were introduced in 1998 as 3GPP was established with the goal of developing a specification for a 3G mobile phone system based on the 2G GSM system, within the scope of the International Telecommunication Union’s International Mobile Telecommunications-2000 (IMT-2000).

Another 3GPP2 standard organization was formed to develop the competing 3G system based on CDMA.

In March 2008, the International Telecommunications Union-Radio communications sector (ITU-R) specified a set of requirements for 4G standards and named it International Mobile Telecommunications Advanced (IMT-Advanced) specification.

It set the peak speed requirements for 4G service at 100 megabits per second (Mbps) for high mobility communication (such as from trains and cars) and 1 gigabit per second (Gbps) for low mobility communication (such as pedestrians and stationary users).

Mobile WiMax and LTE were released as successors of 3G, but since they were not able to match the numbers set by IMT-A. So they were not considered true 4G. However, service providers marketed them as 4G to sell their services. Improved versions of both the systems with improved numbers, which were matching 4G requirements was later released 2011 and 2013. 

Since 4G is based on IP telephony, the 3G spread spectrum was abandoned and replaced by  OFDM multicarrier transmission and other frequency-domain equalization (FDE) schemes, making it possible to transfer very high bit rates despite extensive multipath radio propagation (echoes). The peak bit rate is further improved by smart antenna arrays for multiple-input multiple-output (MIMO) communications.

And now for 5G, the standard organizations already established the requirements to consider a system 5G. 3GPP defines any system using “5G NR” (5G New Radio) software as “5G”, a definition that came into general use by late 2018. 

ITU also formed a standard called IMT-2020 which includes the requirements issued by ITU-R for 5G services. 

Key Requirements of 5G as per IMT-2020 standard

As per requirements by IMT-2020, 5G systems are expected to provide an enhanced device and network capabilities, faster data transfer, low latency, low energy consumption, increased number of devices, and broad bandwidth.

It does not only provide enhancement to the traditional mobile broadband scenarios, but extending the application of this technology to use cases involving ultra-reliable, low latency, and massive machine-type communications.

Requirements of 5G The ITU-R has defined three main types of uses of 5G:

  • Enhanced Mobile Broadband (eMBB)
  • Ultra-Reliable Low Latency Communications (URLLC)
  • Massive Machine Type Communications (mMTC)

Let’s take them one by one:

Enhanced Mobile Broadband (eMBB) 

It refers to using 5G as an evolution to 4G LTE mobile broadband services with faster connections, higher throughput, and more capacity. Enhanced Mobile Broadband (eMBB) will be instrumental in enabling rich media applications such as mobile AR and VR, as well as 4K and 360° video streaming.

Ultra-Reliable Low-Latency Communications (URLLC) 

It refers to the use of the network for mission-critical applications that require uninterrupted and robust data exchange. It is targeted toward extremely latency-sensitive or mission-critical use cases, such as factory automation, robot-enabled remote surgery, and autonomous driving.

Massive Machine-Type Communications (mMTC) 

It refers to the type of usage that connects to a large number of low power, a low-cost device in a wide area which has high requirements on scalability and increased battery lifetime.

Here are the performance targets for 5G networks:

5G Requirements

Key Takeaways:

5G promises to accelerate cellular data transfer speeds from 100 Mbps to a peak rate of 20 Gbps. Moreover, 5G networks are capable of latency rates of under a millisecond in ideal conditions making the technology highly suitable for critical applications that require rapid responsiveness, such as remote vehicle control. Such numbers can make next-generation wireless networks stand taller even against the fastest fiber-optic wired networks.

Besides, the eight parameters (mentioned in the chart above) to define key capabilities for IMT-2020 5G:

5G can support up to a million devices per square kilometer, while 4G supports only up to 100,000 devices per square kilometer. 5G can also use new radio millimeter bands in the 30 GHz to 300 GHz range whereas current 4G networks operate on frequencies below 6GHz.

Initiatives Taken By Government Agencies

South Korea

On 9 April 2019, South Korean President Moon Jae-in drafted government plans to support the 5G ecosystem by providing more than KRW 30 trillion ($26.2 billion) for the next four years. Investments are for supporting different segments of 5G technologies such as autonomous driving, smart cities, IoT, digital healthcare, and smart manufacturing.

New Zealand

The first allocation of 5G spectrum will be the 3.5 GHz band, with national rights to this portion of the spectrum expected to be auctioned early in 2020, the Government announced

National spectrum rights in the 3.5 GHz band will be available to use from November 2022 when the existing rights in this band expire. With the agreement of the existing rights holder, an operator may be able to use the rights earlier. Spectrum in this band will also be available to regional wireless broadband service providers.

Australia

The Australian government wants to create an environment that allows its telecommunications industry to be at the forefront of seizing the benefits of 5G across the economy. To that end, they have released the paper, 5G—Enabling the future economy which helps to define the next wave of productivity and innovation across different sectors of the Australian economy. 

Canada

The Canadian Government declared to invest $400 million and formed a public-private partnership focused on 5G technology and development of its use cases such as smart cities, healthcare, education, connected and autonomous vehicles, entertainment and media, and Internet of Things. 

Japan

Japan’s Internal Affairs and Communications Ministry planned to start carrying out research and development activities for succeeding 5G technology by forming a new telecommunications standard, the Japanese press reported citing sources from the ministry. The ministry said that Japanese operators will be in a position to commercialize this post-5G standard around 2025. 

United Kingdom

A new initiative was launched by Cambridge Wireless (CW), TM Forum, and the Knowledge Transfer Network (KTN) to promote the UK’s 5G ecosystem in 2018. The UK Government announced the consortium that will run its new 5G Innovation Network. They also released a report which outlined £600 billion investments in national infrastructure. 

Germany

Germany’s Minister for Digital Infrastructure has vowed to make the country an innovation leader in 5G technology – by unveiling its strategic roadmap for the implementation of 5G in Germany.

Germany’s regulator has already earmarked some of the spectrum it intends to use in order to enable the new service – whilst it has been reported further frequencies set to be allocated by the end of 2018. In a statement issued by the Germany Ministry for Digital Infrastructure, it claimed that its strategy would make the country a leader in 5G.

Singapore

China-Singapore Tianjin Eco-City, a joint project between the two countries, will add 10 5G base stations to the existing two by 2020 to expand its 5G network, Chinese telecom giant China Mobile said Monday. The base stations will enable the eco-city, located in northern China’s Tianjin Municipality, to use 5G technology to transmit high-definition pictures and videos to improve city management, according to Zhang Lei, deputy general manager of China Mobile’s branch in Tianjin’s Binhai New Area.

Malaysia

Malaysia is still studying the use of fifth-generation technology (5G) pioneered by China. In the meantime, on measures that could be taken by MCMC to ensure that the existing networks provided by telecommunication operators were expanded into non-economical areas before shifting towards 5G, Ahmad Nasruddin said the government had many initiatives, among others, under the Universal Service Provision (USP) Programme.

United States

The Trump administration and government regulators unveiled a major push at the White House to accelerate the rollout of the high-speed, next-generation mobile data technology known as 5G.

Under the plan, the Federal Communications Commission will release a wide swath of high-frequency airwaves for cellular use in what will be the largest trove of U.S. wireless spectrum ever to be auctioned off. As much as 3.4 gigahertz of “millimeter-wave” spectrum could be sold to wireless carriers such as AT&T and Verizon in the sale, which will begin Dec. 10, according to FCC Chairman Ajit Pai. 

The FCC also proposed a $20 billion fund to expand broadband in rural America over the coming decade, connecting up to 4 million households and small businesses to high-speed Internet, Pai said. The “Rural Digital Opportunity Fund” could launch later this year, after a period of public notice and comment.

India

The Indian government has set a commercial rollout target for consumers by 2020 at par with global timelines with the telecom department poised to unveil its 5G technology roadmap by June.

Initiatives by Standard Telecom Agencies

IEEE

In December 2016, IEEE Future Directions launched the IEEE 5G Initiative which later, in August 2018 was re-branded to IEEE Future Networks with the tagline ‘Enabling 5G and Beyond’. The initiative helps in the development & deployment of 5G technology and addresses challenges associated with it.

The initiative involves gathering the researchers, scientists, engineers, and decisionmakers from industry, academia, and government bodies to solve the challenges and disclose the opportunities associated with current and future networks.

ATIS

ATIS announced its agenda to advance the 5G network evolution at its 5G Symposium to be held on 2019, June 8 and 9 in Chicago. The role of this initiative is to ensure that the ultra-high-capacity and future network performance delivers the full opportunity envisioned by 5G. 

ETSI

ETSI’s initiative, Multi-access Edge Computing (MEC), is an Industry Specification Group (ISG). The purpose of this initiative is to create a standardized, open environment which will allow the efficient and faster integration of applications from vendors, service providers, and third-parties across multi-vendor Multi-access Edge Computing platforms. 

Multi-access Edge Computing (MEC) offers cloud-computing capabilities and IT services at the edge of the network to application developers and content providers. This environment is characterized by ultra-low latency and high bandwidth as well as real-time access to radio network information that can be leveraged by applications.

ITU

The ITU launched a new research initiative to find emerging and future ICT sector network demands, beyond 2030 and the requirements wished by IMT-2020 (5G). This initiative will be carried out by the newly established ITU Focus Group on Technologies for Network 2030 which will be open to all interested parties. 

It will include new concepts, architecture, protocols, and new solutions that are fully compatible to support both existing and new applications.

Which technologies have brought a leap from 4G to 5G?

LTE Advanced or LTE-A is the evolution of the original LTE technology toward even higher bandwidths. LTE-A (Release10) was to provide higher bitrates in a cost-efficient way and, at the same time, completely fulfill the requirements set by ITU for IMT Advanced, also referred to as 4G.

  • Increased peak data rate, DL 3 Gbps, UL 1.5 Gbps
  • Higher spectral efficiency, from a maximum of 16bps/Hz in R8 to 30 bps/Hz in R10
  • Increased number of simultaneously active subscribers
  • Improved performance at cell edges, e.g. for DL 2×2 MIMO at least 2.40 bps/Hz/cell.

The main new functionalities introduced in LTE-Advanced are Carrier Aggregation (CA), enhanced use of multi-antenna techniques and support for Relay Nodes (RN). Five primary building blocks of LTE-A are as follows:

  • Carrier Aggregation
  • Increased MIMO
  • Coordinated Multipoint (CoMP)
  • Relay Station
  • Heterogeneous Network or HetNet Networks

Essentially, LTE-A is the foundation of 5G radio access network (RAN) below 6 GHz while the frequencies from 6 GHz to 100 GHz will explore new technologies in parallel. Take MIMO, for instance, where 5G raises the bar to Massive MIMO technology, a large array of radiating elements that will help increase network capacity as well as to achieve ultra-high-speed.

Difference between 4g and 5g

The early blueprint of 5G pilot networks mostly comprises of beamforming technology and small cell base stations. That said, over the period of time, new enabling technologies were added to the network in order to achieve the goals set for 5G. There has been a lot going on the 5G industry besides research & development. Let’s have a glimpse at some of the head-turning events took place in the industry so far.

In June 2018, 3GPP released standalone and existing with additional specifications for a network to qualify as 5G. After this, the top wireless industry players like Qualcomm, Nokia, Ericsson, etc. started planning their positions on 5G patents licensing to decide royalty rates for upcoming 5G products.

Lots of research has been going to estimate 5G patents of these top players. Most of the studies have been using the ETSI’s list of declared SEPs for 5G. These patents certainly not wrong but is the list exhaustive? i.e. does the list have all the 5G SEPs? 

ETSI’s list of declared SEPs could be very vast but we also can’t ignore the fact that there could be even more meat, some hidden gems which might have been left out due to oversight or maybe just get lost in the huge number of patents in a portfolio.

There could also be individual researchers, research institutes, or tech leaders that have not even declared any patent as a 5G SEP to ETSI or are not even aware of the gold mines they are sitting upon.

But how one can get a true estimate of 5G patents in a company’s portfolio?

What do I mean by truly 5G patents? – You ask? Let me explain.

Unless the patent has already been declared a SEP for 5G based on specifications issued by standard governing bodies like 3GPP, it boils down to reading the patent in detail and figuring out if the patent is indeed related to 5G or its enabling tech, which was responsible for the leap from 4G to 5G.

Let’s understand this with an Example

Let’s take an example of Network Virtualization technology which is going to be widely utilized in 5G and there are a lot of patents in this area. Network Virtualization is not a new concept and it has roots in the networks earlier than 5G. It is even utilized in various domains other than mobile communication. 

That’s why, an in-depth analysis is needed to check if the concept of virtualization has been described in view of mobile communication technology; only if it does, we consider the patent relevant to 5G. For instance, in our practice we only consider a patent to be relevant if it talks about virtualization in the radio access network (EnodeB), core network, etc. If the case is different, then we consider the patent to be irrelevant, e.g. virtualization in computer, web browser, routers, switches, etc.

Therefore, careful analysis is needed while deciding whether a patent is truly 5G or not. 

One conclusion we have reached from performing such studies is that there’s more than what meets the eye. The count of 5G patents that we got is unmatchable to the ones that have been declared to ETSI.

There are lots of patents which not yet declared as SEP but could be truly 5G patents. There are good chances you might have a few lying around in your portfolio. 

List of 5G Enabling Technologies

NFV

The basic idea behind NFV is to decouple software from hardware. With NFV, network operators can deploy various network functions, such as firewall or encryption, on virtual machines (VMs). Whenever a user requests a new network function, the network operator will deploy a VM for the requested function automatically.

NFVNFV enables network slicing – a virtual network architecture that allows multiple virtual networks to be created atop a shared physical infrastructure. Network slicing will play a crucial role in 5G networks because of the multitude of use cases and new services 5G will support. 

Moreover, NFV will also enable the distributed cloud – an application of cloud computing technologies to interconnect data and applications served from multiple geographic locations – helping to create flexible and programmable networks for the needs of tomorrow.

SDN

The main idea behind SDN is to move the control plane away from network hardware and enable external control of the data plane through a logical software entity called a controller.

Software-Defined Networking (SDN) is a new architecture that allows dynamic reconfiguration of the network. In a traditional network device such as a router, switches contain both the control and data plane. As described above, SDN separates the control and data plane in network entities enabling centralization management of a cellular network.

Social media, mobile devices, and cloud computing are pushing traditional networks to their limits. SDN has the potential to revolutionize data centers by offering a flexible way to control the network to function like the virtualized versions of computing and storage.

New Radio Frequencies

The fundamental difference between 5G and 4G is the use of unique radio frequencies to achieve what 4G networks cannot. 4G networks use frequencies below 6 GHz, but 5G uses extremely high frequencies in the 30 GHz to 300 GHz range.

One of the most important advantages of using higher frequencies is that they support a huge capacity for fast data. Further, they are also highly directional causing no or less interference to nearby users.

However, the super-high frequencies work only if there’s a clear, direct line-of-sight between the antenna and the device receiving the signal. Also, they are easily absorbed by humidity, rain, and other objects, and they don’t travel too far.

For these reasons, we can expect lots of antennas placed strategically to support 5G, maybe a base station would be installed in each room/building.

The air interface defined by 3GPP for 5G is known as New Radio (NR), and the 5G spectrum is divided into two bands, FR1 (<6 GHz) and FR2 (mmWave) each having different capabilities.

Massive MIMO

MIMO stands for Multiple-input multiple-output and can be essentially boiled down to a single principle: a wireless network that includes transmitting and receiving more than one data signal simultaneously, typically using a separate antenna for transmitting and receiving of each data signal.

In LTE, MIMO networks tend to use two, four or eight antennas to transmit and receive data. On the other hand, Massive MIMO will utilize a high number of antennas that can range up to as many as 96 to 128 antennas.

Massive MIMO can considerably improve the data capacity and could potentially yield as much as a 50-fold increase in the future. The more antennas the transmitter/receiver is equipped with, the more possible signal paths and the better the performance in terms of data rate and link reliability.

Massive MIMOChannel Coding

A powerful and flexible channel coding scheme is one of the fundamental components of the NR access technology to meet higher data rates and more diverse requirements of typical NR scenarios including eMBB, mMTC, and URLLC. In 3GPP, various channel coding schemes were considered – convolutional codes, turbo codes, polar codes, and LDPC codes – for evaluation.

Later on, 3GPP adopted Polar Coding for 5G/NR Uplink/Downlink control channel for eMBB. The channel coding techniques for 5G NR have changed from Turbo in 4G to Polar for the control channel and LDPC for the data channel.

Beamforming

Currently, the cellular antennas broadcast signals in all directions in LTE. This method works acceptably for now, but, in the coming time, as the number of mobile devices will increase, these antennas need to blast out even more signals, which would make reception sluggish and increase the interference. 

BeamformingBeamforming streamlines all of it. Instead of sending out information in Omni-direction, 5G antennas would blast a single in particular direction to a user with their own stream of data. This is far more efficient, guards against crisscrossing signals, and can handle many times more devices than what is being done today.

MEC (Mobile Edge Computing)

Mobile edge computing or a more technically accurate name, Multi-access Edge Computing (MEC) – is a form of network architecture that enables cloud computing to be done at the edge of a mobile network (e.g. near Base Station).

At present, the content storage and online computations are done on remote servers, which are typically situated far away from the end-user devices. With MEC, those processes will be brought closer by being integrating these functionalities into 5G base stations.

Without edge computing, 5G will not be able to meet the performance goals of very low latency and massive broadband, simply because it takes time for data to travel over the fiber networks connecting the radios on the towers to the network core.

Both MEC and 5G are considered disrupting technologies on their own but combined they will become a powerful force in the world of computing. 

Applications such as artificial intelligence (AI), Internet of Things (IoT), and virtual reality (VR) are going to be widely used with the arrival of 5G.

Small Cell

The importance of including Small Cells as a key element of 5G deployment strategy is underscored by 5G mmWave. mmWave holds enormous potential for capacity, speed, and low latency, but is impractical to deploy via Macro Cells due to inability of mmWave to penetrate walls, trees, buildings, etc. To utilize MMwave enormous potential, dense deployments of Small Cells will be required, especially indoors where most data is consumed.

Small cells work exactly similar to conventional cell concept with advanced techniques like MIMO, beamforming and millimeter waves for transmission. Low power transmitting stations can be easily deployed using small cell concept. 

Small base stations can be fixed on a wall for indoor applications, while, the small towers or lamp posts can be used for outdoor applications. The fiber connections, wired connection, and microwave links can be used to make backhaul connections.

Radio convergence & Unlicensed Spectrum

One benefit of the transition to 5G is the convergence of multiple networking functions to achieve cost, power, and complexity reductions. LTE has also targeted convergence with Wi-Fi by introducing License Assisted Access (LAA) and LTE-WLAN Aggregation (LWA), but the differing capabilities of cellular and Wi-Fi have limited the scope of convergence. 

However, significant improvement in cellular performance specifications in 5G, combined with migration from Distributed Radio Access Network (D-RAN) to Cloud- or Centralized-RAN (C-RAN) and the use of small cells potentially narrows the gap between Wi-Fi and cellular networks in dense and indoor deployments. Radio convergence can result in sharing ranging from the aggregation of cellular and Wi-Fi channels to the use of a single silicon device for multiple radio access technologies.

NOMA (Non-Orthogonal Multiple Access)

NOMA (Non-Orthogonal Multiple Access) is a prominent multiple access technique proposed for 5G. In NOMA, for multiple accesses, different power levels are used to serve different users, while sharing the same time, frequency, and spreading-code resources between the multiple users. Also, the entire bandwidth can be exploited by each user for entire communication time to achieve low latency and high data rates.

5G Patents Analysis

Top Companies Own Most 5G Patents

As the 5G patent landscape is maturing, companies are eager to release their SEPs more than ever. Our patent analysis of 100 major 5G players shows that besides telecom companies, universities and research institutes have also been doing intense preparation to welcome 5G.

Here is the list of top 10 companies holding most 5G patents:

Top Companies with 5G PatentsHuawei holds the top position for having the most 5G patents followed by Qualcomm and then Samsung. China wants to have an upper hand in 5G therefore, it won’t come as a surprise to see Chinese companies such as Huawei and ZTE surpass some of the top companies worldwide. 

Top Universities indulged in 5G Research

A total of 13 universities and research institutes made their presence in the list of top 100 5G patent holders.

Here the list of universities and research institutes researching on 5G:

Top Universities with 5G PatentsAn interesting insight is that 8 out of 10 universities are from China which makes the country one of the top hubs for 5G technology. 

Electronics and Telecommunications Research Institute (ETRI) which tops the list of universities is the most popular research institute when comes to telecommunication. 

They are also the reason for some crucial 5G inventions. ETRI invented the Wi-Fi auto-steering technology which enables mobile users to shift from mobile network to WiFi depending on the connection quality and availability. 

It also developed Giga WiFi technology which can provide the users to speed up to 1 Gbps even on the fast-riding cars and trains. 

Similarly, other universities and research institutes have also been working on 5G technology publicly or privately. 

Top Players leading the pack for Patents in Enabling Technologies

We will be discussing the patent data of two enabling technologies just to give you an idea about the companies leading the research on 5G enabling technologies. In most of the cases, the top companies will remain the same however their order/ranking can be changed. 

Companies Leading in MM-Wave Enabling Technologies with maximum Patents

Here are the top 10 companies which have a maximum number of patents in the mm-wave technology. 

Top companies with mm-wave patentsSamsung started the research on 5G mm-wave from 2009 and had done a great job maturing this enabling technology. It initiated an in-depth study into next-generation telecommunications technology and delivered a proposal on ultra-high frequency to Samsung Research. 

In 2011, Samsung Electronics initiated an in-house project to expand upon research, and in the following year established a “Next Generation Communications Lab,” accelerating the development of ultra-high frequency and 5G technologies.

Qualcomm is also considered a pioneer in 5G technology even Apple considered their technology “the best”

Companies Leading in Beamforming Enabling Technologies with maximum Patents

Here are the top 10 companies which have a maximum number of patents in the beamforming technology.

Top companies with Beamforming patentsFor Beamforming, Qualcomm holds the top position. 

5G Patents by Country

For geographical distribution, we pulled two kinds of the dataset. 

The first dataset will provide the information of the major R&D hubs of 5G technology as per the patent count. 

Similarly, the second dataset will provide the information of the major markets for the 5G technology as per the patent count. 

Top Markets 

Top 5G marketsThe chart represents the top markets for 5G technology as the assignees want to secure their inventions in these countries due to the high demand for 5G.

The above chart contains all the 5G patents possessed by a country whether or not it is first filed in that country. That is, 106143 is the total count of 5G related patents in the US, but many of these patents may have a different priority country than the US.

Top R&D Hubs

Top R&D Hubs of 5GThe above chart represents the top R&D hubs of 5G technology according to the patent data. The large patent count in the US and China is proof of the intense research going on both countries.

The USA is in the top position on this chart as well but the number of patent count is different than the above chart. The chart represents the priority country of a patent where its R&D happened. For example, 51,146 patents count means that these are homegrown US patents which makes it the priority country for all these patents, hence the US sits comfortably at the top. 

The same is for China, it is a priority country of 46,425 patents as for all these patents, R&D took place in China. 

As you can see, there is not much of a difference between the US and China and is the proof how these two countries are competing with each other to be the global leader in 5G technologies.

FactsComparison – ETSI declared SEPs List (Nov 2018) vs (March 2019) vs. GreyB’s Analysis

This comparison is one of the most important parts of this study. This is where the telecom people can know about how they could win or loss in the 5G SEPs game.

You might be aware of the policy of ETSI, where various companies have to declare their potential candidates are known to them to ETSI and companies usually declare the candidates progressively as and when it comes to their knowledge. ETSI then publishes a list of all such declarations bi-yearly. 

Therefore to help you understand how fast 5G SEP landscape is expanding we have compared patents declared in November 2018 vs March 2019 by ETSI. This strengthens ours believes that ETSI list though as per se correct, but, not comprehensive and you may find some unhidden insights when a complete domain analysis would be done. Like, we just did it on a broader scale.

If you are a telecom company, it will help to find more SEPs in your patent portfolio which you can license through your own licensing program or maybe through a patent pool. It will also help you to know that rely on declared SEPs by companies to a standard organization can make you lose treasures.

There could be more SEPs hidden in the portfolio of a telecom company which might be lost due to oversight or a tremendous number of patents in a portfolio.

There are also chances that individual researchers, academia, or even tech leaders haven’t yet declared their SEPs to a standard telecom organization.

To understand this situation, let’s take the example of mm-wave technology.

Below is the list of companies along with the number of SEPs declared in mm-wave technology to ETSI in November 2018 and March 2019:

Interestingly, the patent count has increased substantially when compared with November 2018. It means that a lot more will be uncovered in future times and you may be at a loss if you don’t anticipate what would come up.

As per data, Samsung owns the maximum number of SEPs which could be possible since as per our analysis, Samsung has the most patents in mm-wave technology. But the useful insight is that the number is only 8% if compared with our data. That’s mean, Samsung could have more SEPs in their portfolio. 

And there could be two reasons for such a small SEPs count; either Samsung isn’t aware of its hidden SEPs or they have some other agenda. 

Another interesting finding would be Intel’s surpassing Qualcomm as per the ETSI list. But in our count, Qualcomm scores the most number of patents in the technology, therefore, chances are very high that they have some other licensing plans and are not willing to declare their patents to any standard governing body.

Companies like AT&T and Sony are not in the ETSI declared list but since they have a good number of patents in this technology, we can assume that they haven’t declared their SEPs yet. 

Similar is the case with other enabling technologies, Let’s have a look at those stats – Take SEPs declared in ETSI list March 2019 related to beamforming technology for example:

Above chart again changes the order of top innovator in a particular 5G enabling technology.

Insights such as Ericsson has only disclosed 25 SEPs to ETSI but has more than 300 patents on beamforming. Again, either they might be unaware of their hidden SEPs or have some other agenda in mind.

Ericsson has only 7.5% SEP conversion rate which is worst among the TOP 10 companies who declared their assets to ETSI, while, LG has the best SEP conversion rate i.e. 31%.

Also, you should not take out Sony, ETRI, NTT, as they are among the Top 10 players if we consider overall patent count in enabling technologies. You may miss them out if you rely on ETSI list only.

Conclusion

After years spent R&D, telecom companies are keen to make the 5G a reality. However, in order to make 5G technology more mainstream, these companies need to keep on innovating and protect their technology through patents.

Telecom companies in order to gain a strategic edge in the domain aim to declare most of their patents as standard-essential. The road most followed to get the standard essential tag for patents is by declaring them in standards like ETSI, 3GPP, etc.

Another viable option is submitting its patents to a patent pool. The most prominent challenge with this approach is that companies have to fulfill all the criteria mentioned by the pool in order to gain inclusion – This option is a bit tedious when compared to declaring patents as SEPs.

Regarding SEPs, our analysis revealed that many of the 5G patent holders are still unaware of the hidden gems in their portfolio. The way forward from here is to get a thorough analysis (manual) conducted. Otherwise, there are high chances of even top players and pioneers missing the train leading to the market-leading station.

Authored By: Vipin Singh, Research Analyst, Market Research, Aman Kumar, Senior Research Analyst, Search Team, and Gaurav Sharma, Research Analyst, Solution Team

Leave a Comment

Contact Us

Got Questions! Queries! Send us an email.